Adams operations, algebras up to homotopy and cyclic homology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Homotopy Operations for Simplicial Commutative Algebras

The indicated operation algebra is studied by methods dual to the usual ones for studying the Steenrod algebra. In particular, the operations are constructed using higher symmetries of the shuffle map and their "Adem relations" are computed using the transfer map in the cohomology of symmetric groups.

متن کامل

Homology and Homotopy Theory Homotopy and Homology

1. TJ'he first step toward connecting these two basic concepts of topology was taken by L. E. J. Brouwer in 1912 by demonstrating that two continuous mappings of a two-dimensional sphere into itself can be continuously deformed into each other if and only if they have the same degree (that is, if they are equivalent from the point of view of homology theory). After having generalized Brouwer's ...

متن کامل

Homology of Moduli Spaces of Curves and Commutative Homotopy Algebras

There have been a number of mathematical results recently identifying algebras over certain operads [4, 25, 17, 28, 16, 10, 14, 11]. See [1, 26] for expository surveys of the basics of operad theory. Before citing any of these results, let us mention some trivial classical examples. Let A denote one of the three words: “commutative”, “associative” and “Lie”. In each of these cases, consider the...

متن کامل

Hopf Algebras up to Homotopy and the Bockstein Spectral Sequence

Anick proved that every q-mild Hopf algebra up to homotopy is isomorphic to the universal enveloping algebra of a chain Lie algebra. We provide a new proof, that involves extensive use of the Bockstein spectral sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2000

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(98)00071-8